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Iteration procedures are often used in solution chemistry. Under
unfavourable conditions, an iteration may diverge, converge only
slowly, or converge to give an erroneous result. Such cases are illustrated
here by the iterations used in solubility measurements to calculate
the free ligand concentration. Divergence implies polynuclear com-
plex formation or serious medium effects.

Improvements of the procedures are suggested as well as methods
to check the reliability of the procedure used.

The method of solving simultaneous equations by iteration is applied to
many problems in solution chemistry, especially when a small correction
is applied to some quantity. If this correction successively grows large, one
must consider the possibility that the iteration procedure may eventually
fail in giving the correct result. One common example of such an iteration
is encountered when complex formation is studied by solubility measurements:
The free ligand concentration is often obtained by iteration. In the present
paper, this iteration will be discussed in some detail. Limitations and pitfalls
will be demonstrated, and possible improvements suggested. The conclusion
drawn will in principle be valid whenever an iteration is employed.

SOLUBILITY MEASUREMENTS: VARIOUS ITERATION PROCEDURES

For simplicity only solubility measurements employing a simple salt will
be considered, i.e., a salt ML, (s) formed by the central ion M and the ligand
ion L2

The problems arise mainly at the right wing of the solubility curve,!
where the solubility is high, and where there is an increasing uncertainty
about the complexes formed. The discussion will therefore be limited to this
part of the curve (slope >0; ¢f. p. 1577).

The following equations apply (Notation, see Ref. 1):
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[L]=C.- DS (1)
where D=rsi—y=dlog 8/dlog[L] (2)

For many systems, DS is negligible compared with C; over a wide range of
concentration, and thus simply C} =[L]. However, with increasing S and D,
the difference between [L] and C; may grow to be considerable. Since [L]
occurs in eqn. (2) as well as in eqn. (1), some kind of iteration normally has
to be employed in order to find consistent values of D and [L].

If the calculation is performed with the aid of a high speed digital com-
puter the following numerical iteration is often employed: Starting with
[L]=C,, a first set of stability constants is calculated, and from these, % and
D (eqn. (2)). These values of D are used to give better valus of [L], and so
forth.

In manual calculations the numerical iteration is far too tedious. Instead
a graphical iteration is usually employed: log § is plotted versus log C;, C; being
used as a first approximation to [L]. The slope of the curve, D,, is determined
and hence [L], = C; — DS. Log 8§ is then plotted vs. log [L], and the procedure
is repeated until [L] and D stay constant. If more than one or two steps are
required, the procedure is rather time-consuming. It is also difficult to estimate
the slope of a curve with sufficient accuracy.

A point-by-point iteration, i.e. one in which [L] could be obtained for each
point without the repeated plotting of curves, would be an attractive possibility.
Such an iteration is possible under certain conditions, as the following deduc-
tion will show.

Differentiating eqn. (1) with respect to S one obtains

dL] _d¢, _, dD

ds — ds ds
Hence
dlog[L] 1 d log Oy, dD
“dlogS [T](OL dTog 8 ”S(D+ d s ))
Inverting gives (d log §/d log C; = D,)
| Do [L]
C;Dg1—8(D+dD[d In )
or, since [L]=C; —D 8
_ C./8—D
D= C8DA- D+dD[Am s (3)
For iteration purposes:
' _ C./S-D,
Drr= (D~ (D, +dD, [ 5) @

Thus, D, is first determined from a plot of log S vs. log C;. D is then obtained
by eqn. (4). Finally, [L] is calculated by eqn. (1).
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The usefulness of this procedure is somewhat limited by the term dD/d In S
in eqn. (4) representing the change of the slope of the solubility curve. However,
in the part of the curve considered here (see above) this change is small com-
pared with D and is of course negligible if D is constant, e.g., when the com-
plex formation is complete.

Neglecting dD/d In 8, the point-by-point iteration has been applied to
Bi#t —CI” data,? yielding values of D and [L] not significantly different from
those obtained by graphical iteration. (Table 1. The highest values of § were
not included in Ref. 2.) The convergence was in most cases very rapid.

Table 1. Solubility data on the bismuth chloride system at Cy=1 M (see Ref. 2). S is
corrected for the change in [H*]. The slope D, as obtained by graphical and point-by-
point iteration, respectlvely

D
4
gi' l Sx10 CLIS .
graph. point.

0.020 1.86 107.5 1.4 1.4
0.050 8.98 55.7 2.22 2.17
0.100 41.9 23.9 2.656 2.61
0.150 100 15.0 2.80 2.85
0.200 181 11.0 divergence

Two interesting questions regarding these iterations now emerge:
a) Does the iteration always converge?
b) If it converges, does it then necessarily give the right values of D and [L]?
The discussion of these problems is best founded on eqn. (4). We shall start
by showing, however, that the graphical and point-by-point iterations are
equivalent, and thus the conclusions drawn from eqn. (4) are valid also for
the graphical method.
Consider two adjacent points, with solublhtles 8§ and S +dS, respectively.

In the n:th cyele of the graphical iteration, the slopes D, and D,+ % ds,

respectively, were found for these points. In cycle number (n+1) we find
[L],,+1=CL—D,,S
for the solubility 8, and

dD .
[Llns1+d[Liys1 =0, +dC; - (D,,+ e as )(S+ as)
for the solubility 8+ dS.
Hence d [L],4+1=dCy — <D,, + —%— S)dS. Then, log § is plotted vs. log [L]s+1,

the slope of the resulting curve being
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Do Glog8 _ dS [Ll:
"1 dlog[Llasr 8 d[Lluix
or Do ds8(C,-D,S)
"1~ 78(d0;, — (D, +dD,/d In 8) dS)
or Dyor= C./S-D,

de, [d8—(D,+dD,/d In S)
Finally we recall that
dlog 8 ds ¢

0T dlog €y, = dC;, S

Hence
déy,
ds

= (CL/8)Dg?

and thus
C./S-D,
(Cy/S)Dy*—(dD,/d In S+ D,)

which is identical to eqn. (4).

Dn+1=

CONVERGENCE OR DIVERGENCE

The iteration (eqn. (4)) converges if eqn. (3) has a real solution, when solved
for D.

Eqns. (1) and (2) are based on two assumptions: absence of polynuclear
complexes and absence of medium effects. If these assumptions are valid,
then eqn. (3) evidently has a real solution. Put in another way, if we find diver-
gence for some part of the solubility curve we may conclude that polynuclear
complexes are formed and/or medium changes seriously affect the activity
coefficients. (Naturally, convergence does not prove that the complexes are
mononuclear.)

If dD/d In 8 is neglected, eqn. (3) has the solution

D=}(1+(C/8)Dy +3v/ (1 +(C,/S)Dy )P — 4 C 8 (5)
which is real if

(1+(C/8)Dg )2 ~4 CrfS 20 (6)

The unequality (6) is thus the condition for convergence. (See also Fig.
la—b.) Its use may be illustrated with the solubility data on CuCl(s) given by
Ahrland and Rawsthorne.® Application of the unequality (6) shows that the
iteration should diverge for the points where C; >1 M (D,=1.85; C;/8>9.6
required; Cy[/8=9.8 when Cy=1.000; /S =28.4 when C; =1.300). Divergence
is in fact found for values of C; >1 M. The reason is clear: Other evidence *
strongly indicates a formation of polynuclear complexes (being significant
even at lower (). Moreover, as § is growing high, medium effects are to be
expected.
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On the Bi(III)— CI” system, divergence was similarly found when Cy=1M
and C1,>>0.200 M (Table 1). Here, the reason for divergence is not immediately
clear. The solubilities, though, had to be corrected considerably for the change
in [H*] caused by the dissolution of BiOCl, and the uncertainty in this correc-
tion may be part of the explanation.

In neither of these examples was the neglect of dD/dIn 8 of any great
importance.

f (D)
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Fig. 1. Curves: the function f (=right member of eqn. (3)) versus D, showing divergence

(a) and convergence by eqn. (4) iteration (b) (arrows show the path of iteration); con-

vergence to right or wrong value (below) (c); Newton-Raphson iteration (p. 1578) (d).
The circles indicate the start points ¢.e. D=D, -
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CONVERGENCE TO WRONG VALUE

Eqn. (3) has two roots. An iteration (eqn. (4)) will converge to one of
these roots, and not necessarily to the right one. In an actual case we do not
normally know a priort which value of D is the right one. The situation is
therefore best illustrated by constructed examples.

Consider first a system where one complex dominates in a range of [L],
1.e.dD/d In S=0 in this range. Let, for instance, D = 2, implying that S = K[LJ%.
If a suitable value of the constant K is chosen, one can readily calculate S,
Oy, and D, for any value of [L]. Fig. 2 shows D, and the two roots of eqn. (3)
a8 functions of Cy/S. It can be shown that, under the conditions considered
here, an iteration according to eqn. (4) always converges to the lower value of
D. Thus (Fig. 2), when C;/S>4, D=2 is obtained, as required, but when
C./8< 4 theiteration gives a value of D<2. Around C, /S =4 the convergence
is very slow. Fig. lc illustrates the iteration further: wlhen Cy/8=1T (curve 1),
D=2 is rapidly obtained; when C;/S=4 (curve 2) D=2 is obtained but very
slowly; when C; /S =3 (curve 3) D=1.5 is obtained.
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Fig. 2. S=10[L}*: D (solid), other root of Fig. 3. S=1[L]*+1000[L]*: D (solid), other
eqn. (3) (dashes), and D, (dots and dashes) root of eqn. (3) (dashes), and D, (dots and
versus Cp [S. dashes) versus Cy /S.

As another example, we consider a system where D varies. Let, for instance
S =1[L}?+ 1000[L]}*

Fig. 3 shows how D and D, vary with C/S. The course of the other root of
eqn. (3) is also indicated. Again, an erroneous value of D is obtained by the
iteration if C'; /S is lower than a certain value (=11 in this example).

As the examples show, the values of (/S should not be below the point
where the two roots of eqn. (3) coincide. According to eqn. (5), two coinciding
roots are obtained when Cp[S=D? if dD/d In =0 (not far from this value if
dD/d In §0). Since invariably C;/S>D (eqn. (1)), the risk of convergence
to the wrong root is evidently present only when D>1.

Figs. 2 and 3 show one important feature of the wrong root: its value
decreases with increasing O} (decreasing C/S) while the right root increases.
Since D=7n—y (eqn. (2)) also 7 would decrease with increasing Cp. This is
certainly contrary to expectation, and therefore convergence to the wrong
root normally should not pass unnoticed.

Although the limit, C /S = D?, has been exceeded in some solubility studies
reported in the literature 4% the author has not been able to find one where
convergence to the wrong root is encountered. When an iteration is attempted,
divergence is normally found instead, due to polynuclear complex formation
or other reasons (cf. above).

CONCLUSIONS

Summarizing, the often used graphical iteration, and the point-by-point
iteration described herein, occasionally may diverge, or converge to give
erroneous values of D and [L].

The numerical iteration (see above) will probably be more or less sensitive
to these risks, depending on the details of the computer program used. For
instance, the condition is often imposed that the stability constants be positive.
A decreasing value of D is not compatible with this condition, and may thus be
rejected.
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The point-by-point iteration may be useful; for manual calculations, if dD/
dIn 8 is small compared to D. If a computer is used, an iteration according to
eqn. (4) could be a good alternative to the procedures normally used. Since
eqn. (4) sometimes results in a slow convergence, a Newton-Raphson type
iteration might instead be employed (see Fig. 1d): The steps are taken along
the tangent of the curve rather than parallel to the D axis.

As a further alternative, eqn. (3) may be solved without iteration. This
may, for instance, be done graphically from plots such as those in Fig. 1.
(Again, a small dD/d In § is required.) Such plots will also show if more than
one feasible root exists, if the solution is very sensitive to experimental scatter,
etc.

As mentioned, the conclusions drawn herein have in principle general
validity. Thus, any iteration may diverge — if the underlying assumptions
are invalid — converge only very slowly, or converge to an erroneous value.
The risks are greater when the changes in the variables involved are great.
A good view of the situation and a check on the reliability of the procedure
used can often be obtained from plots similar to those in Fig. 1.

However, it must be emphasized that the best solution of the various
problems is to avoid them. Referring again to solubility measurements:
when [L] differs appreciably from Cp, [L] should, if possible, be measured
directly. If [L] cannot be measured, it is a sound rule to carefully avoid high
solubilities.

The author is indebted to Professor 8. Fronzus and Dr. S. Ahrland for valuable
and fruitful discussions. I am also grateful to Dr. Ahrland for kindly providing me with
his experimental data.
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